Meandering worms: mechanics of undulatory burrowing in muds.
نویسندگان
چکیده
Recent work has shown that muddy sediments are elastic solids through which animals extend burrows by fracture, whereas non-cohesive granular sands fluidize around some burrowers. These different mechanical responses are reflected in the morphologies and behaviours of their respective inhabitants. However, Armandia brevis, a mud-burrowing opheliid polychaete, lacks an expansible anterior consistent with fracturing mud, and instead uses undulatory movements similar to those of sandfish lizards that fluidize desert sands. Here, we show that A. brevis neither fractures nor fluidizes sediments, but instead uses a third mechanism, plastically rearranging sediment grains to create a burrow. The curvature of the undulating body fits meander geometry used to describe rivers, and changes in curvature driven by muscle contraction are similar for swimming and burrowing worms, indicating that the same gait is used in both sediments and water. Large calculated friction forces for undulatory burrowers suggest that sediment mechanics affect undulatory and peristaltic burrowers differently; undulatory burrowing may be more effective for small worms that live in sediments not compacted or cohesive enough to extend burrows by fracture.
منابع مشابه
Worms as wedges: Effects of sediment mechanics on burrowing behavior
Recent studies document linear elastic response of muddy marine sediments to load and deformation on temporal and spatial scales relevant to animal movement, with burrowers making openings for movement in such sediments by fracture. Cracks propagate through linear elastic solids in mode I (opening-mode crack growth) when the stress intensity factor (KI) at the crack tip exceeds the material’s f...
متن کاملBurrowing in marine muds by crack propagation: kinematics and forces.
The polychaete Nereis virens burrows through muddy sediments by exerting dorsoventral forces against the walls of its tongue-depressor-shaped burrow to extend an oblate hemispheroidal crack. Stress is concentrated at the crack tip, which extends when the stress intensity factor (KI) exceeds the critical stress intensity factor (KIc). Relevant forces were measured in gelatin, an analog for elast...
متن کاملBurrowing by small polychaetes - mechanics, behavior and muscle structure of Capitella sp.
Worms of different sizes extend burrows through muddy sediments by fracture, applying dorso-ventral forces that are amplified at the crack tip. Smaller worms displace sediments less than larger worms and therefore are limited in how much force they can apply to burrow walls. We hypothesized that small worms would exhibit a transition in burrowing mechanics, specifically a lower limit in body si...
متن کاملMechanics and kinematics of backward burrowing by the polychaete Cirriformia moorei.
The polychaete Cirriformia moorei burrows in muddy sediments by fracture, using its hydrostatic skeleton to expand its anterior region and exert force against its burrow wall to extend a crack. Burrowing occurs in four phases: stretching forward into the burrow, extending the crack anteriorly, thickening the burrowing end to amplify stress at the tip of the crack, and bringing the rest of the b...
متن کاملIt's tough to be small: dependence of burrowing kinematics on body size.
Burrowing marine infauna are morphologically diverse and range in size over several orders of magnitude. Whilst effects of ontogenetic and morphological differences on running, flying and swimming are relatively well understood, similar analyses of burrowing mechanics and kinematics are lacking. The polychaete Nereis virens Sars extends its burrow by fracture, using an eversible pharynx to exer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 280 1757 شماره
صفحات -
تاریخ انتشار 2013